cantors-attic

Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.

View the Project on GitHub neugierde/cantors-attic

Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar

Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine

Bird's array notation

Bird’s array notation is a parallel notation to BEAF.

Linear arrays

Limit: \(\{n,n[2]2\}\) has growth rate \(\omega^\omega\)

Example

\begin{eqnarray*} \{3,3,1,2\} &=& \{3,3,\{3,2,1,2\},1\} \\ &=& \{3,3,\{3,3,\{3,1,1,2\},1\}\} \\ &=& \{3,3,\{3,3,3\}\} \
&=& \{3,3,\{3,\{3,2,3\},2\}\} \\ &=& \{3,3,\{3,\{3,\{3,1,3\},2\},2\}\} \\ &=& \{3,3,\{3,\{3,3,2\},2\}\} \\ &=& \{3,3,\{3,\{3,\{3,2,2\},1\},2\}\} \\ &=& \{3,3,\{3,\{3,\{3,\{3,1,2\},1\}\},2\}\} \\ &=& \{3,3,\{3,\{3,\{3,3\}\},2\}\} \\ &=& \{3,3,\{3,7625597484987,2\}\} \\ &=& 3\uparrow^{3\uparrow\uparrow7625597484987}3 \end{eqnarray*}

Multidimentional arrays

Limit: \(\{n,n[1,2]2\}\) has growth rate \(\omega^{\omega^\omega}\)

Example

\begin{eqnarray*} \{3,2[3]2\} &=& \{3 \langle 2 \rangle 2[3]1\} \\ &=& \{3 \langle 1 \rangle 2[2]3 \langle 1 \rangle 2\} \\ &=& \{3,3[2]3,3\} \\ &=& \{3,3,3[2]2,3\} \\ &=& \{3,\{3,2,3[2]2,3\},2[2]2,3\} \\ &=& \{3,\{3,3,2[2]2,3\},2[2]2,3\} \\ &=& \{3,\{3,\{3,2,2[2]2,3\}[2]2,3\},2[2]2,3\} \\ &=& \{3,\{3,\{3,3[2]2,3\}[2]2,3\},2[2]2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3[2]1,3\}[2]1,3\},2[2]1,3\}[2]2,3\},2[2]2,3\} \end{eqnarray*}

Hyperdimentional arrays

Limit: \(\{n,n[1[2]2]2\}\) has growth rate \(^4 \omega\)

Example

\begin{eqnarray*} \{3,2[1,1,2]2\} &=& \{3 \langle 0,1,2 \rangle 2\} \\ &=& \{3 \langle 2,2 \rangle 2\} \\ &=& \{3 \langle 1,2 \rangle 2[2,2]3 \langle 1,2 \rangle 2\} \\ &=& \{3,3[2]3,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[1,2]3,3[2]3,3\} \end{eqnarray*}

Nested arrays

Main rules will remain the same forever.

Limit: \(\{n,n[1\backslash2]2\}\) has growth rate \(\varepsilon_0\)

Example

\begin{eqnarray*} \{3,2[1[2]2]2\} &=& \{3 \langle 0[2]2 \rangle 2\} \\ &=& \{3 \langle 2 \langle 1 \rangle 2 \rangle 2\} \\ &=& \{3 \langle 2,2 \rangle 2\} \\ &=& \{3,3[2]3,3[1,2]3,3[2]3,3[2,2]3,3[2]3,3[1,2]3,3[2]3,3\} \end{eqnarray*}

Hyper-Nested arrays

Limit: \(\{n,n[1/2]2\}\) has growth rate \(\Gamma_0\).

Examples

\begin{eqnarray*} \{3 \langle 0 \backslash 2 \rangle 2\} &=& \{3 \langle R_2 \rangle 2\} \\ &=& \{3 \langle 2 \rangle 2\} \
&=& \{3,3[2]3,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3[2]\{3,\{3,\{3,\{3,\{3,3,3[2]\{3,\{\underbrace{3,\cdots,3}_{3\uparrow\uparrow\uparrow3}\},2[2]2\}\}[2]1,2\},2[2]1,2\}[2]2,3\}[2]2,2\},2\}[2]1,3\},2[2]1,3\} \end{eqnarray*}


\begin{eqnarray*} \{3 \langle 0 [2]\backslash 2 \rangle 2\} &=& \{3 \langle 2 \backslash 2 \rangle 2\} \\ &=& \{3,3[2]3,3[1 \backslash 2]3,3[2]3,3[2 \backslash 2]3,3[2]3,3[1 \backslash 2]3,3[2]3,3\} \end{eqnarray*}

Nested Hyper-Nested arrays

This part consists of 2 parts.

Negations

\(S_i = \textrm` b \langle A_{i,1}’ \rangle b [A_{i,1}] b \langle A_{i,2}’ \rangle b [A_{i,2}] \cdots [A_{i,p_i-1}] b \langle b \neg S_{i+1} \rangle b [A_{i,p_i}] c_i \#_i \textrm’\). Increase i by 1 and follow Rules A4a~d again.

\(S_i = \textrm` R_b \textrm’\),

\(R_n = \textrm` b \langle A_{i,1}’ \rangle b [A_{i,1}] b \langle A_{i,2}’ \rangle b [A_{i,2}] \cdots [A_{i,p_i-1}] b \langle R_{n-1} \rangle b [A_{i,p_i}] c_i-1 \#_i \textrm’\),

\(R_1 = \textrm` 0 \textrm’\).

\(S_i = \textrm` b \langle A_{i,1}’ \rangle b [A_{i,1}] b \langle A_{i,2}’ \rangle b [A_{i,2}] \cdots [A_{i,p_i-1}] b \langle R_b \rangle b [A_{i,p_i}] c_i-1 \#_i \textrm’\),

\(R_n = \textrm` b \langle A_{i,1}’ \rangle b [A_{i,1}] b \langle A_{i,2}’ \rangle b [A_{i,2}] \cdots [A_{i,p_i-1}] b \langle R_{n-1} \rangle b [A_{i,p_i}] c_i-1 \#_i \neg k-1 \#_{i+1} \textrm’\),

\(R_1 = \textrm` 0 \textrm’\).

\(S_i = \textrm` b \langle A_{i,1}’ \rangle b [A_{i,1}] b \langle A_{i,2}’ \rangle b [A_{i,2}] \cdots [A_{i,p_i-1}] b \langle A_{i,p_i}’ \rangle b [A_{i,p_i}] c_i-1 \#_i \textrm’\).

Note: \(\#, \#^*, and \%\) does not contain \(\neg\)s.

Limit: \(\{n,n[1[1\neg1\neg2]2]2\}\) has growth rate \(\theta(\Omega^\Omega)\).

Examples

\begin{eqnarray*} \{3 \langle 0 [1 \neg 1 \backslash 2] 2 \rangle 3\} &=& \{3 \langle 3 \langle 3 \neg 3,3[2]3,3[3]3,3[2]3,3 \rangle 3 \rangle 3\} \end{eqnarray*}


\begin{eqnarray*} \{3 \langle 0 [1 \neg 4] 2 \rangle 3\} &=& \{3 \langle 3 \langle 3 \langle 3 \neg 3 \rangle 3 \neg 3 \rangle 3 \rangle 3\} \end{eqnarray*}

Hierarchal backslashes

\(S_{i,1} = \textrm` R_b \textrm’\),

\(R_n = \textrm` b \langle A_{i,1,1}’ \rangle b [A_{i,1,1}] b \langle A_{i,1,2}’ \rangle b [A_{i,1,2}] \cdots [A_{i,1,p_{i,1}-1}] b \langle R_{n-1} \rangle b [A_{i,1,p_{i,1}}] c_{i,1}-1 \#_{i,1} \textrm’\),

\(R_1 = \textrm` 0 \textrm’\).

\(S_{i,j} = \textrm` R_{b,j-1} \textrm’\),

\(R_{n,j-1}\)

\(= \textrm` b \langle A_{i,j,1}’ \rangle b [A_{i,j,1}] b \langle A_{i,j,2}’ \rangle b [A_{i,j,2}] \cdots b \langle A_{i,j,p_{i,j}-1}’ \rangle b [A_{i,j,p_{i,j}-1}] b \langle A_{i,1,1}’ \rangle b [A_{i,1,1}] b \langle A_{i,1,2}’ \rangle b [A_{i,1,2}] \cdots b \langle A_{i,1,p_{i,1}-1}’ \rangle b [A_{i,1,p_{i,1}-1}] b \langle R_{n-1,1} \rangle b [A_{i,1,p_{i,1}}] c_{i,1}-1 \#_{i,1} \backslash_j c_{i,j}-1 \#_{i,j} \textrm’\),

\(R_{n,k} = \textrm` b \langle A_{i,k+1,1}’ \rangle b [A_{i,k+1,1}] b \langle A_{i,k+1,2}’ \rangle b [A_{i,k+1,2}] \cdots b \langle A_{i,k+1,p_{i,k+1}-1}’ \rangle b [A_{i,k+1,p_{i,k+1}-1}] b \langle R_{n,k+1} \rangle b [A_{i,k+1,p_{i,k+1}}] c_{i,k+1}-1 \#_{i,k+1} \textrm’\)

\(R_{1,1} = \textrm` 0 \textrm’\).

\(S_i = \textrm` b \langle A_{i,1,1}’ \rangle b [A_{i,1,1}] b \langle A_{i,1,2}’ \rangle b [A_{i,1,2}] \cdots [A_{i,1,p_{i,1}-1}] b \langle A_{i,1,p_{i,1}}’ \rangle b [A_{i,1,p_{i,1}}] c_{i,1}-1 \#_{i,1} \textrm’\).

Hierarchal Hyper-Nested arrays

Nested Hierarchal Hyper-Nested arrays