The Cantor's attic library
Welcome to the library, our central repository for references cited here
on Cantor’s attic.
Library holdings
- Abramson, F., Harrington, L., Kleinberg, E., & Zwicker, W. (1977). Flipping properties: a unifying thread in the theory of large cardinals. Ann. Math. Logic, 12(1), 25–58.
- Apter, A. W. Some applications of Sargsyan’s equiconsistency method. Fund. Math., 216, 207–222.
- Baaz, M., Papadimitriou, C. H., Putnam, H. W., Scott, D. S., & Harper, C. L. (2011). Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge University Press. https://books.google.pl/books?id=Tg0WXU5_8EgC
- Bagaria, J. (2006). Axioms of generic absoluteness. Logic Colloquium 2002. https://doi.org/10.1201/9781439865903
- Bagaria, J., & Bosch, R. (2004). Proper forcing extensions and Solovay models. Archive for Mathematical Logic. https://doi.org/10.1007/s00153-003-0210-2
- Bagaria, J., & Bosch, R. (2007). Generic absoluteness under projective forcing. Fundamenta Mathematicae, 194, 95–120. https://doi.org/10.4064/fm194-2-1
- Bagaria, J. (2012). \(C^{(n)}\)-cardinals. Archive for Mathematical Logic, 51(3–4), 213–240. https://doi.org/10.1007/s00153-011-0261-8
- Bagaria, J., Casacuberta, C., Mathias, A. R. D., & Rosický, J. Definable orthogonality classes in accessible categories are small. Journal of the European Mathematical Society, 17(3), 549–589.
- Bagaria, J., Hamkins, J. D., Tsaprounis, K., & Usuba, T. (2013). Superstrong and other large cardinals are never Laver indestructible. Archive for Mathematical Logic, 55(1-2), 19–35. https://doi.org/10.1007/s00153-015-0458-3
- Bagaria, J. (2017). Large Cardinals beyond Choice. https://events.math.unipd.it/aila2017/sites/default/files/BAGARIA.pdf
- Bagaria, J., Gitman, V., & Schindler, R. (2017). Generic Vopěnkaś Principle, remarkable cardinals, and the weak Proper Forcing Axiom. Arch. Math. Logic, 56(1-2), 1–20. https://doi.org/10.1007/s00153-016-0511-x
- Baumgartner, J. (1975). Ineffability properties of cardinals. I. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I (pp. 109–130. Colloq. Math. Soc. János Bolyai, Vol. 10). North-Holland.
- Blass, A. (2010). Chapter 6: Cardinal characteristics of the continuum. Handbook of Set Theory. http://www.math.lsa.umich.edu/ ablass/hbk.pdf
- Blass, A. (1976). Exact functors and measurable cardinals. Pacific J. Math., 63(2), 335–346. http://web.archive.org/web/20191116153209/https://projecteuclid.org:443/euclid.pjm/1102867389
- Boney, W. (2017). Model Theoretic Characterizations of Large Cardinals.
- Bosch, R. (2006). Small Definably-large Cardinals. Set Theory. Trends in Mathematics, 55–82. https://doi.org/10.1007/3-7643-7692-9_3
- Cantor, G. (1955). Contributions to the Founding of the Theory of Transfinite Numbers (P. Jourdain, Ed.). Dover. http://www.archive.org/details/contributionstot003626mbp
- Carmody, E. K. (2015). Force to change large cardinal strength. https://academicworks.cuny.edu/gc_etds/879/
- Carmody, E., Gitman, V., & Habič, M. E. (2016). A Mitchell-like order for Ramsey and Ramsey-like cardinals.
- Chang, C. C. (1971). Sets Constructible Using \(\mathcal {L}_{κ,κ}\). In Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) (pp. 1–8). Amer. Math. Soc.
- Cody, B., Gitik, M., Hamkins, J. D., & Schanker, J. (2013). The Least Weakly Compact Cardinal Can Be Unfoldable, Weakly Measurable and Nearly θ-Supercompact.
- Cody, B., & Gitman, V. (2015). Eastonś theorem for Ramsey and strongly Ramsey cardinals. Annals of Pure and Applied Logic, 166(9), 934–952. https://doi.org/10.1016/j.apal.2015.04.006
- Corazza, P. (2000). The Wholeness Axiom and Laver sequences. Annals of Pure and Applied Logic, 157–260.
- Corazza, P. (2003). The gap between \({\rm I}_3\)and the wholeness axiom. Fund. Math., 179(1), 43–60. https://doi.org/10.4064/fm179-1-4
- Corazza, P. (2006). The spectrum of elementary embeddings j : V \to V. Annals of Pure and Applied Logic, 139(1–3), 327–399. https://doi.org/10.1016/j.apal.2005.06.014
- Corazza, P. (2010). The Axiom of Infinity and transformations j: V \to V. Bulletin of Symbolic Logic, 16(1), 37–84. https://doi.org/10.2178/bsl/1264433797
- Daghighi, A. S., & Pourmahdian, M. (2018). On Some Properties of Shelah Cardinals. Bull. Iran. Math. Soc., 44(5), 1117–1124. https://doi.org/10.1007/s41980-018-0075-0
- Dimonte, V. (2017). I0 and rank-into-rank axioms.
- Dimopoulos, S. (2019). Woodin for strong compactness cardinals. The Journal of Symbolic Logic, 84(1), 301–319. https://doi.org/10.1017/jsl.2018.67
- Dodd, A., & Jensen, R. (1981). The core model. Ann. Math. Logic, 20(1), 43–75. https://doi.org/10.1016/0003-4843(81)90011-5
- Donder, H.-D., & Koepke, P. (1998). On the Consistency Strength of Áccessible\’Jónsson Cardinals and of the Weak Chang Conjecture. Annals of Pure and Applied Logic. https://doi.org/10.1016/0168-0072(83)90020-9
- Donder, H.-D., & Levinski, J.-P. (1989). Some principles related to Changś conjecture. Annals of Pure and Applied Logic. https://doi.org/10.1016/0168-0072(89)90030-4
- Drake, F. (1974). Set Theory: An Introduction to Large Cardinals. North-Holland Pub. Co.
- Erdős, P., & Hajnal, A. (1962). Some remarks concerning our paper “On the structure of set-mappings\’\’. Non-existence of a two-valued σ-measure for the first uncountable inaccessible cardinal. Acta Math. Acad. Sci. Hungar., 13, 223–226.
- Erdős, P., & Hajnal, A. (1958). On the structure of set-mappings. Acta Math. Acad. Sci. Hungar, 9, 111–131.
- Eskrew, M., & Hayut, Y. (2016). On the consistency of local and global versions of Changś Conjecture.
- Esser, O. (1996). Inconsistency of GPK+AFA. Mathematical Logic Quarterly, 42, 104–108. https://doi.org/10.1002/malq.19960420109
- Esser, O. (1997). An Interpretation of the Zermelo-Fraenkel Set Theory and the Kelley-Morse Set Theory in a Positive Theory. Mathematical Logic Quarterly, 43, 369–377. https://doi.org/10.1002/malq.19970430309
- Esser, O. (1999). On the Consistency of a Positive Theory. Mathematical Logic Quarterly, 45, 105–116. https://doi.org/10.1002/malq.19990450110
- Esser, O. (2000). Inconsistency of the Axiom of Choice with the Positive Theory GPK^+_∞. Journal of Symbolic Logic, 65(4), 1911–1916. https://doi.org/10.2307/2695086
- Esser, O. (2003). On the axiom of extensionality in the positive set theory. Mathematical Logic Quarterly, 19, 97–100. https://doi.org/10.1002/malq.200310009
- Evans, C. D. A., & Hamkins, J. D. Transfinite game values in infinite chess. http://jdh.hamkins.org/game-values-in-infinite-chess
- Feng, Q. (1990). A hierarchy of Ramsey cardinals. Annals of Pure and Applied Logic, 49(3), 257–277. https://doi.org/10.1016/0168-0072(90)90028-Z
- Foreman, M., & Kanamori, A. (2010). Handbook of Set Theory (M. Foreman & A. Kanamori, Eds.; First). Springer. http://www.springer.com/mathematics/book/978-1-4020-4843-2
- Forti, M., & Hinnion, R. (1989). The Consistency Problem for Positive Comprehension Principles. J. Symbolic Logic, 54(4), 1401–1418.
- Friedman, H. M. (1998). Subtle cardinals and linear orderings. https://u.osu.edu/friedman.8/files/2014/01/subtlecardinals-1tod0i8.pdf
- Fuchs, G., Hamkins, J. D., & Reitz, J. (2015). Set-theoretic geology. Annals of Pure and Applied Logic, 166(4), 464–501. https://doi.org/http://web.archive.org/web/20191116153209/https://doi.org/10.1016/j.apal.2014.11.004
- Gaifman, H. (1974). Elementary embeddings of models of set-theory and certain subtheories. In Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) (pp. 33–101). Amer. Math. Soc.
- Gitman, V. (2011). Ramsey-like cardinals. The Journal of Symbolic Logic, 76(2), 519–540. http://boolesrings.org/victoriagitman/files/2011/08/ramseylikecardinals.pdf
- Gitman, V., & Welch, P. (2011). Ramsey-like cardinals II. J. Symbolic Logic, 76(2), 541–560. http://boolesrings.org/victoriagitman/files/2011/08/ramseylikecardinalsii.pdf
- Gitman, V., & Hamkins, J. D. (2018). A model of the generic Vopěnka principle in which the ordinals are not Mahlo.
- Gitman, V., & Johnstone, T. A. Indestructibility for Ramsey and Ramsey-like cardinals. https://victoriagitman.github.io/files/indestructibleramseycardinalsnew.pdf
- Gitman, V., & Shindler, R. Virtual large cardinals. https://ivv5hpp.uni-muenster.de/u/rds/virtualLargeCardinalsEdited5.pdf
- Goldblatt, R. (1998). Lectures on the Hyperreals. Springer.
- Goldstern, M., & Shelah, S. (1995). The Bounded Proper Forcing Axiom. J. Symbolic Logic, 60(1), 58–73. http://www.jstor.org/stable/2275509
- Golshani, M. (2017). An Easton like theorem in the presence of Shelah cardinals. M. Arch. Math. Logic, 56(3-4), 273–287. https://doi.org/10.1007/s00153-017-0528-9
- Hamkins, J. D., & Lewis, A. (2000). Infinite time Turing machines. J. Symbolic Logic, 65(2), 567–604. https://doi.org/10.2307/2586556
- Hamkins, J. D. (2001). The wholeness axioms and V=HOD. Arch. Math. Logic, 40(1), 1–8. https://doi.org/10.1007/s001530050169
- Hamkins, J. D. (2002). Infinite time Turing machines. Minds and Machines, 12(4), 521–539. http://boolesrings.org/hamkins/turing-mm/
- Hamkins, J. D. (2004). Supertask computation. Classical and New Paradigms of Computation and Their Complexity Hierarchies, 23, 141–158. https://doi.org/10.1007/978-1-4020-2776-5_8
- Hamkins, J. D. (2008). Unfoldable cardinals and the GCH.
- Hamkins, J. D. (2009). Tall cardinals. MLQ Math. Log. Q., 55(1), 68–86. https://doi.org/10.1002/malq.200710084
- Hamkins, J. D., & Johnstone, T. A. (2010). Indestructible strong un-foldability. Notre Dame J. Form. Log., 51(3), 291–321.
- Hamkins, J. D., & Johnstone, T. A. (2014). Resurrection axioms and uplifting cardinals. http://jdh.hamkins.org/resurrection-axioms-and-uplifting-cardinals/
- Hamkins, J. D., & Johnstone, T. A. (2014). Strongly uplifting cardinals and the boldface resurrection axioms.
- Hamkins, J. D. (2016). The Vopěnka principle is inequivalent to but conservative over the Vopěnka scheme. http://jdh.hamkins.org/vopenka-principle-vopenka-scheme/
- Hauser, K. (1991). Indescribable Cardinals and Elementary Embeddings. 56(2), 439–457. https://doi.org/10.2307/2274692
- Holy, P., & Schlicht, P. (2018). A hierarchy of Ramsey-like cardinals. Fundamenta Mathematicae, 242, 49–74. https://doi.org/10.4064/fm396-9-2017
- Jackson, S., Ketchersid, R., Schlutzenberg, F., & Woodin, W. H. (2015). Determinacy and Jónsson cardinals in L(\mathbbR). https://doi.org/10.1017/jsl.2014.49
- Jech, T. J. (2003). Set Theory (Third). Springer-Verlag. https://logic.wikischolars.columbia.edu/file/view/Jech%2C+T.+J.+%282003%29.+Set+Theory+%28The+3rd+millennium+ed.%29.pdf
- Jensen, R., & Kunen, K. (1969). Some combinatorial properties of L and V. http://www.mathematik.hu-berlin.de/ raesch/org/jensen.html
- Kanamori, A., & Magidor, M. (1978). The evolution of large cardinal axioms in set theory. In Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) (Vol. 669, pp. 99–275). Springer. http://math.bu.edu/people/aki/e.pdf
- Kanamori, A., Reinhardt, W. N., & Solovay, R. M. (1978). Strong axioms of infinity and elementary embeddings. http://math.bu.edu/people/aki/d.pdf
- Kanamori, A., & Awerbuch-Friedlander, T. (1990). The compleat 0†. Mathematical Logic Quarterly, 36(2), 133–141. https://doi.org/10.1002/malq.19900360206
- Kanamori, A. (2009). The higher infinite (Second, p. xxii+536). Springer-Verlag. https://link.springer.com/book/10.1007%2F978-3-540-88867-3
- Kentaro, S. (2007). Double helix in large large cardinals and iteration of elementary embeddings. Annals of Pure and Applied Logic, 146(2-3), 199–236. https://doi.org/10.1016/j.apal.2007.02.003
- Ketonen, J. (1974). Some combinatorial principles. Trans. Amer. Math. Soc., 188, 387–394. https://doi.org/10.1090/S0002-9947-1974-0332481-5
- Koellner, P., & Woodin, W. H. (2010). Chapter 23: Large cardinals from Determinacy. Handbook of Set Theory. http://logic.harvard.edu/koellner/LCFD.pdf
- Kunen, K. (1978). Saturated Ideals. J. Symbolic Logic, 43(1), 65–76. http://www.jstor.org/stable/2271949
- Larson, P. B. (2013). A brief history of determinacy. http://www.users.miamioh.edu/larsonpb/determinacy_cabal.pdf
- Laver, R. (1997). Implications between strong large cardinal axioms. Ann. Math. Logic, 90(1–3), 79–90.
- Leshem, A. (2000). On the consistency of the definable tree property on \aleph_1. J. Symbolic Logic, 65(3), 1204–1214. https://doi.org/10.2307/2586696
- Maddy, P. (1988). Believing the axioms. I. J. Symbolic Logic, 53(2), 181–511. https://doi.org/10.2307/2274520
- Maddy, P. (1988). Believing the axioms. II. J. Symbolic Logic, 53(3), 736–764. https://doi.org/10.2307/2274569
- Madore, D. (2017). A zoo of ordinals. http://www.madore.org/ david/math/ordinal-zoo.pdf
- Makowsky, J. (1985). Vopěnkaś Principle and Compact Logics. J. Symbol Logic. https://www.jstor.org/stable/2273786?seq=1#page_scan_tab_contents
- Mitchell, W. J. (1997). Jónsson Cardinals, Erdős Cardinals, and the Core Model. J. Symbol Logic.
- Mitchell, W. J. (2001). The Covering Lemma. Handbook of Set Theory. http://www.math.cas.cz/ jech/library/mitchell/covering.ps
- Miyamoto, T. (1998). A note on weak segments of PFA. Proceedings of the Sixth Asian Logic Conference, 175–197.
- Nielsen, D. S., & Welch, P. (2018). Games and Ramsey-like cardinals.
- Perlmutter, N. (2010). The large cardinals between supercompact and almost-huge. http://boolesrings.org/perlmutter/files/2013/07/HighJumpForJournal.pdf
- Rathjen, M. (2006). The art of ordinal analysis. http://www.icm2006.org/proceedings/Vol_II/contents/ICM_Vol_2_03.pdf
- Schanker, J. A. (2012). Partial near supercompactness. Ann. Pure Appl. Logic. https://doi.org/10.1016/j.apal.2012.08.001
- Schanker, J. A. (2011). Weakly measurable cardinals. MLQ Math. Log. Q., 57(3), 266–280. https://doi.org/10.1002/malq.201010006
- Schanker, J. A. (2011). Weakly measurable cardinals and partial near supercompactness [PhD thesis]. CUNY Graduate Center.
- Schindler, R.-D. (2000). Proper forcing and remarkable cardinals. Bull. Symbolic Logic, 6(2), 176–184. https://doi.org/10.2307/421205
- Sharpe, I., & Welch, P. (2011). Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties. Ann. Pure Appl. Logic, 162(11), 863–902. https://doi.org/10.1016/j.apal.2011.04.002
- Shelah, S. (1994). Cardinal Arithmetic. Oxford Logic Guides, 29.
- Silver, J. (1970). A large cardinal in the constructible universe. Fund. Math., 69, 93–100.
- Silver, J. (1971). Some applications of model theory in set theory. Ann. Math. Logic, 3(1), 45–110.
- Suzuki, A. (1998). Non-existence of generic elementary embeddings into the ground model. Tsukuba J. Math., 22(2), 343–347.
- Suzuki, A. (1999). No elementary embedding from V into V is definable from parameters. J. Symbolic Logic, 64(4), 1591–1594. https://doi.org/10.2307/2586799
- Trang, N., & Wilson, T. (2016). Determinacy from Strong Compactness of \omega_1.
- Tryba, J. (1983). On Jónsson cardinals with uncountable cofinality. Israel Journal of Mathematics, 49(4).
- Usuba, T. (2017). The downward directed grounds hypothesis and very large cardinals. Journal of Mathematical Logic, 17(02), 1750009. https://doi.org/10.1142/S021906131750009X
- Usuba, T. (2019). Extendible cardinals and the mantle. Archive for Mathematical Logic, 58(1-2), 71–75. https://doi.org/10.1007/s00153-018-0625-4
- Viale, M., & Weiß, C. (2011). On the consistency strength of the proper forcing axiom. Advances in Mathematics, 228(5), 2672–2687.
- Villaveces, A. (1996). Chains of End Elementary Extensions of Models of Set Theory. JSTOR.
- Welch, P. (1998). Some remarks on the maximality of Inner Models. Logic Colloquium. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.7037&rep=rep1&type=pdf
- Welch, P. (2000). The Lengths of Infinite Time Turing Machine Computations. Bulletin of the London Mathematical Society, 32(2), 129–136.
- Wilson, T. M. (2018). Weakly remarkable cardinals, Erdős cardinals, and the generic Vopěnka principle.
- Woodin, W. H. (2010). Suitable extender models I. Journal of Mathematical Logic, 10(01n02), 101–339. https://doi.org/10.1142/S021906131000095X
- Woodin, W. H. (2011). Suitable extender models II: beyond ω-huge. Journal of Mathematical Logic, 11(02), 115–436. https://doi.org/10.1142/S021906131100102X
- Zapletal, J. (1996). A new proof of Kunenś inconsistency. Proc. Amer. Math. Soc., 124(7), 2203–2204. https://doi.org/10.1090/S0002-9939-96-03281-9
User instructions
Cantor’s attic users may make contributions to the library, in bibtex
format, and then cite those references in other articles. Edit the
/_bibliography/references.bib
file to make your contribution.