Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.

View the Project on GitHub neugierde/cantors-attic

Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar

Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine

The Empty Set


The empty set (denoted $\emptyset$ or $\varnothing$) is the only set $S$ such that $\neg\exists a(a\in S)$. It contains absolutely no elements, and has cardinality 0. It is often thought of to be the only urelement (this holds up in $V$), and is increadibly important as a result. It is also one of the only ranks to also be an ordinal, and contains many properties when put in a poset.

As A Poset

The empty set is ordered by every relation, not concerning any urelements. When ordered by any relation at all, the empty poset is every one of the following:

As An Ordinal

The Von Neumann ordinal $\varnothing$ is 0, and is the only ordinal equivalent to it’s own rank, other than $V_1=1=\{\varnothing\}$ and $V_2=2=\{\varnothing,\{\varnothing\}\}$. There is some debate whether or not it is a limit ordinal.

As a Function\Relation

The empty function is relatively uninteresting. It’s domain and range are both $\varnothing$ (and thus it is a bijective function). For this reason it is often considered trivial. However, the empty relation has many, many properties that could only be attributed to itself. It is the only relation that is all of the following: