cantors-attic

Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.

View the Project on GitHub neugierde/cantors-attic

Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar

Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine

Epsilon naught, $\epsilon_0$

The ordinal $\epsilon_0$, commonly given the British pronunciation “epsilon naught,” is the smallest ordinal $\alpha$ for which $\alpha=\omega^\alpha$ and can be equivalently characterized as the supremum

\[\\epsilon\_0=\\sup\\{\\omega,\\omega^\\omega,\\omega^{\\omega^\\omega},\\ldots\\}\]

The ordinals below $\epsilon_0$ exhibit an attractive finitistic normal form of representation, arising from an iterated Cantor normal form involving only finite numbers and the expression $\omega$ in finitely iterated exponentials, products and sums.

The ordinal $\epsilon_0$ arises in diverse proof-theoretic contexts. For example, it is the proof-theoretic ordinal of the first-order Peano axioms.

Epsilon numbers

The ordinal $\epsilon_0$ is the first ordinal in the hierarchy of $\epsilon$-numbers, where $\epsilon_\alpha$ is the $\alpha^{\rm th}$ fixed point of the exponential function $\beta\mapsto\omega^\beta$. These can also be defined inductively, as $\epsilon_{\alpha+1}=\sup\{\epsilon_\alpha+1,\omega^{\epsilon_\alpha+1},\omega^{\omega^{\epsilon_\alpha+1}},\ldots\}$, and $\epsilon_\lambda=\sup_{\alpha\lt\lambda}\epsilon_\alpha$ for limit ordinals $\lambda$. The epsilon numbers therefore form an increasing continuous sequence of ordinals. Every uncountable infinite cardinal $\kappa$ is an epsilon number fixed point $\kappa=\epsilon_\kappa$.