Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.
View the Project on GitHub neugierde/cantors-attic
          Quick navigation
          The upper attic
          The middle attic
          The lower attic
          The parlour
          The playroom
          The library
          The cellar
        
          Sources
          Cantor's Attic (original site)
          Joel David Hamkins blog post about the Attic
          Latest working snapshot at the wayback machine
        
The Extended Veblen function is a function with more than 2 arguments to express ordinals from \(\Gamma_0\) to \(\psi(\Omega^{\Omega^\omega})\), the small Veblen ordinal.
\(\varphi(1,0,0)=\varphi_{\varphi_{\ddots_{\varphi_0(0)}}(0)}(0)
\
\varphi(1,0,1)=\varphi_{\varphi_{\ddots_{\varphi(1,0,0)+1}}(0)}(0)
\
\varphi(1,0,n+1)=\varphi_{\varphi_{\ddots_{\varphi(1,0,n)+1}}(0)}(0)
\\ \varphi(1,1,0)=\varphi(1,0,\varphi(1,0,\varphi(1,0,\cdots)))
\
\varphi(1,1,1)=\varphi_{\varphi_{\ddots_{\varphi(1,1,0)+1}}(0)}(0)
\\ \varphi(1,2,0)=\varphi(1,1,\varphi(1,1,\varphi(1,1,\cdots)))
\\ \varphi(1,n+1,0)=\varphi(1,n,\varphi(1,n,\varphi(1,n,\cdots)))
\\ \varphi(2,0,0)=\varphi(1,\varphi(1,\varphi(1,\cdots,0),0),0)
\
\varphi(2,0,1)=\varphi_{\varphi_{\ddots_{\varphi(2,0,0)+1}}(0)}(0)
\\ \varphi(2,1,0)=\varphi(2,0,\varphi(2,0,\varphi(2,0,\cdots)))
\\ \varphi(3,0,0)=\varphi(2,\varphi(2,\varphi(2,\cdots,0),0),0)
\\ \varphi(n+1,0,0)=\varphi(n,\varphi(n,\varphi(n,\cdots,0),0),0)
\
\varphi(1,0,0,0)=\varphi(\varphi(\varphi(\cdots,0,0),0,0),0,0)\)