Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.
View the Project on GitHub neugierde/cantors-attic
Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar
Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine
High-jump cardinals are a certain kind of large cardinals. A cardinal $\kappa$ is high-jump if it is the critical point of an elementary embedding $j:V\to M$ such that $M$ is closed under sequences of length $\text{sup}\{j(f)(\kappa)|f:\kappa\to\kappa\}$. This closure condition is a weakening of the definition of a huge cardinal.
Let $j:M\to N$ be a (nontrivial) elementary embedding. The clearance of $j$ is the ordinal $\text{sup}\{j(f)(\kappa)$ $|$ $f:\kappa\to\kappa,f\in M\}$ where $\kappa$ is the critical point of $j$.
A cardinal $\kappa$ is high-jump if there exists $j:V\to M$ with critical point $\kappa$ and clearance $\theta$ such that $M^\theta\subseteq M$, i.e. $M$ contains all sequences of elements of $M$ of length $\theta$. $j$ is called a high-jump embedding, and a normal fine ultrafilter on some $\mathcal{P}_\kappa(\lambda)$ generating an ultrapower embedding that is high-jump is a high-jump ultrafilter (or high-jump measure).
$\kappa$ is called almost high-jump if $M$ is closed under sequences of length $<\theta$ instead, i.e. $M^\lambda\subseteq M$ for all $\lambda<\theta$. $j$ is then an almost high-jump embedding. This means that for all $f:\kappa\to\kappa$, $M^{j(f)(\kappa)}\subseteq M$. Shelah for supercompactness cardinals are a natural weakening of almost high-jump cardinals which allows to have one embedding per $f:\kappa\to\kappa$ rather than a single embedding for all such $f$s.
$\kappa$ is high-jump order $\eta$ (resp. almost high-jump order $\eta$) if there exists a strictly increasing sequence of ordinals $\{\theta_\alpha:\alpha<\eta\}$ such that for all $\alpha<\eta$, there exists a high-jump embedding (resp. almost high-jump embedding) with critical point $\kappa$ and clearance $\theta_\alpha$. $\kappa$ is super high-jump (resp. super almost high-jump) if there are high-jump embeddings (resp. almost high-jump embeddings) with arbtirarily large clearance (i.e. it is “(almost) high-jump order Ord”).
A high-jump cardinal $\kappa$ has unbounded excess closure if for some clearance $\theta$, for all cardinals $\lambda\geq\theta$, there is a high-jump measure on $\mathcal{P}_\kappa(\lambda)$ generating an ultrapower embedding with clearance $\theta$.
The dual notion high-jump-for-strongness, where the closure condition $M^\theta\subseteq M$ is weakened to $V_\theta\subseteq M$, turns out to be equivalent to superstrongness.
Let $j:V\to M$ a nontrivial elementary embedding with critical point $\kappa$ and clearance $\theta$. Then there is no $f:\kappa\to\kappa$ such that $j(f)(\kappa)=\theta$. Also, $\kappa^{+}\leq cf(\theta)\leq 2^\kappa$ (see cofinality) and $\beth^M_\theta=\theta$. Moreover, $M_\theta\prec M_{j(\kappa)}$ and $M_\theta$ satisfies ZFC where $M_\theta=M\cap V_\theta$.
When $\kappa$ is almost high-jump, in both $V$ and $M$, $\theta^\kappa=\theta$, also $\theta$ is singular. Moreover, $V_\theta\prec M_{j(\kappa)}$ and $V_\theta$ satisfies ZFC.
The following statements also holds:
Suppose there is a almost high-jump cardinal. Then there are many cardinals below it that are Shelah for supercompactness. Also, in the model $V_\kappa$ there are many supercompact cardinals.
Every high-jump cardinal is almost high-jump, and has order $\theta$; in fact, in the models $V_\theta$, $V_\kappa$ and $M_{j(\kappa)}$ there are many super almost high-jump cardinals.
The existence of a high-jump cardinal with order $\eta$ implies that for every $\gamma<\eta$, there exists a model in which that cardinal is high-jump with order $\gamma$. The same statement holds for almost high-jump cardinals.
The existence of a high-jump cardinal with unbounded excess closure is equiconsistent with the existence of a cardinal $\kappa$ such that for all sufficiently large $\lambda$, there exists a high-jump measure on $\mathcal{P}_\kappa(\lambda$).
Suppose $\kappa$ is almost huge; then in the model $V_\kappa$ there are many cardinals that are high-jump with unbounded excess closure.
Suppose that there exists a pair of cardinals ($\kappa$, $\theta$) such that there is a high-jump embedding $j:V\to M$ with critical point $\kappa$ and clearance $\theta$ and such that $M^{2^\theta}\subseteq M$. Then the cardinal $\kappa$ is super high-jump in the model $V_\theta$, and the cardinal $\kappa$ has high-jump order $\theta$ in $V$. Furthermore, there are many super high-jump cardinals in the models $V_\kappa$, $V_\theta$, and $M_{j(\kappa)}$.
The least high-jump cardinal is not $\Sigma_2$-reflecting. In particular, it is not supercompact and not even strong. The same is true for the least almost huge cardinal, the least superstrong cardinal, the least almost-high-jump cardinal, and the least Shelah-for-supercompactness cardinal.
Norman Lewis Perlmutter, The large cardinals between supercompact and almost-huge [1]
This article is a stub. Please help us to improve Cantor's Attic by adding information.