Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.
View the Project on GitHub neugierde/cantors-attic
Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar
Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine
The Greeks had already noted that there are two ways of considering infinity.
\((\\forall x\\in\\mathbb{N})(\\exists y) (y>x),\) and this is not really deniable.
\((\\exists y)(\\forall x\\in\\mathbb{N})(y>x),\) and this naturally implies that $y$ cannot be a member of $\mathbb{N}$.
The existence of an actual infinity is philosophically non trivial and not accepted by all mathematicians. Its existence cannot be proven; it is axiomatically given (see ZFC).
The real question however is, given a collection, how does one determine whether it is finite or not. Certainly, if one can count all the elements of a collection, then the collection is finite, but who can count up to a googol? yet it is finite.
Gallileo noticed that there are as many even numbers as there are positive integers. To see this without formal machinery: imagine the collection of all positive integers. Don’t try to imagine them individually, imagine them as a completed collection. Now multiply them all by 2. There are no left overs. This violates the Greek saying that the whole is greater than the parts.
This leads to Dedekind’s characterisation: A finite set cannot be in one-to-one relation with a proper subset. An infinite set is a set that can be in one-to-one relation with a proper subset.
In this sense, once accepted the existence of the set of all natural numbers, $\mathbb{N}$ is infinite since it is possible to map $n$ to $n+1$ thus providing a one-to-one relation from $\mathbb{N}$ to $\mathbb{N}\setminus\{0\}$.