cantors-attic

Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.

View the Project on GitHub neugierde/cantors-attic

Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar

Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine

Reinhardt

The existence of Reinhardt cardinals has been refuted in $\text{ZFC}_2$ and $\text{GBC}$ by Kunen (Kunen inconsistency), the term is used in the $\text{ZF}_2$ context, although some mathematicians suspect that they are inconsistent even there.

Definitions

A weakly Reinhardt cardinal(1) is the critical point $\kappa$ of a nontrivial elementary embedding $j:V_{\lambda+1}\to V_{\lambda+1}$ such that $V_\kappa\prec V$ ($\mathrm{WR}(\kappa)$. Existence of $\kappa$ is Weak Reinhardt Axiom ($\mathrm{WRA}$) by Woodin).(Corazza, 2010):p.58

A weakly Reinhardt cardinal(2) is the critical point $\kappa$ of a nontrivial elementary embedding $j:V_{\lambda+2}\to V_{\lambda+2}$ such that $V_\kappa\prec V_\lambda\prec V_\gamma$ (for some $\gamma > \lambda > \kappa$).(Baaz et al., 2011):(definition 20.6, p. 455)

A Reinhardt cardinal is the critical point of a nontrivial elementary embedding $j:V\to V$ of the set-theoretic universe to itself.(Bagaria, 2017)

A super Reinhardt cardinal $\kappa$, is a cardinal which is the critical point of elementary embeddings $j:V\to V$, with $j(\kappa)$ as large as desired.(Bagaria, 2017)

For a proper class $A$, cardinal $\kappa$ is called $A$-super Reinhardt if for all ordinals $\lambda$ there is a non-trivial elementary embedding $j : V \rightarrow V$ such that $\mathrm{crit}(j) = \kappa$, $j(\kappa)\gt\lambda$ and $j^+(A)=A$. (where $j^+(A) := \cup_{α∈\mathrm{Ord}} j(A ∩ V_α)$)(Bagaria, 2017)

A totally Reinhardt cardinal is a cardinal $\kappa$ such that for each $A ∈ V_{κ+1}$, $(V_\kappa, V_{\kappa+1})\vDash \mathrm{ZF}_2 + \text{“There is an $A$-super Reinhardt cardinal”}$.(Bagaria, 2017)

Totally Reinhardt cardinals are the ultimate conclusion of the Vopěnka hierarchy. A cardinal is Vopěnka if and only if, for every $A\subseteq V_\kappa$, there is some $\alpha\lt\kappa$ $\eta-$extendible for $A$ for every \(\eta\lt\kappa\), in that the witnessing embeddings fix $A\cap V_\zeta$. In its original conception Reinhardt cardinals were thought of as ultimate extendible cardinals, because if $j: V\rightarrow V$ is elementary, then so is $j\restriction V_{\kappa+\eta}: V_{\kappa+\eta}\rightarrow V_{j(\kappa+\eta)}$. It is as if one embedding works for all $\eta$.

Relations

$\mathrm{WRA}$ (1) implies thet there are arbitrary large $I1$ and super $n$-huge cardinals. Kunen inconsistency does not apply to it. It is not known to imply $I0$.(Corazza, 2010)

$\mathrm{WRA}$ (1) does not need $j$ in the language. It however requires another extension to the language of $\mathrm{ZFC}$, because otherwise there would be no weakly Reinhardt cardinals in $V$ because there are no weakly Reinhardt cardinals in $V_\kappa$ (if $\kappa$ is the least weakly Reinhardt) — obvious contradiction.(Corazza, 2010)

$\mathrm{WR}(\kappa)$ (1) implies that $\kappa$ is a measurable limit of supercompact cardinals and therefore is strongly compact. It is not known whether $\kappa$ must be supercompact itself. Requiring it to be extendible makes the theory stronger.(Corazza, 2010)

Weakly Reinhardt cardinal(2) is inconsistent with $\mathrm{ZFC}$. $\mathrm{ZF} + \text{“There is a weakly Reinhardt cardinal(2)”}\rightarrow\mathrm{Con}(\mathrm{ZFC} + \text{“There is a proper class of $\omega$-huge cardinals”})$ (At least here $\omega$-huge=$I1$) (Woodin, 2009). You can get this by seeing that $V_\gamma\vDash\forall\alpha\lt\lambda(\exists\kappa’\gt\alpha(I1(\kappa’)\land\kappa’\lt\lambda))$.

If $\kappa$ is super Reinhardt, then there exists $\gamma\lt\kappa$ such that $(V_\gamma , V_{\gamma+1})\vDash \mathrm{ZF}_2 + \text{“There is a Reinhardt cardinal”}$.(Bagaria, 2017)

If $\delta_0$ is the least Berkeley cardinal, then there is $\gamma\lt\delta_0$ such that $(V_\gamma , V_{\gamma+1})\vDash\mathrm{ZF}_2+\text{“There is a Reinhardt cardinal witnessed by $j$ and an $\omega$-huge above $\kappa_\omega(j)”$}$. (Here $\omega-$huge means $I3$). (Bagaria, 2017) Each club Berkeley cardinal is totally Reinhardt.(Bagaria, 2017)

References

  1. Corazza, P. (2010). The Axiom of Infinity and transformations j: V \to V. Bulletin of Symbolic Logic, 16(1), 37–84. https://doi.org/10.2178/bsl/1264433797
  2. Baaz, M., Papadimitriou, C. H., Putnam, H. W., Scott, D. S., & Harper, C. L. (2011). Kurt Gödel and the Foundations of Mathematics: Horizons of Truth. Cambridge University Press. https://books.google.pl/books?id=Tg0WXU5_8EgC
  3. Bagaria, J. (2017). Large Cardinals beyond Choice. https://events.math.unipd.it/aila2017/sites/default/files/BAGARIA.pdf
Main library