Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.
View the Project on GitHub neugierde/cantors-attic
Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar
Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine
Uplifting cardinals were introduced by Hamkins and Johnstone in (Hamkins & Johnstone, 2014), from which some of this text is adapted.
An inaccessible cardinal $\kappa$ is uplifting if and only if for every ordinal $\theta$ it is $\theta$-uplifting, meaning that there is an inaccessible $\gamma>\theta$ such that $V_\kappa\prec V_\gamma$ is a proper elementary extension.
An inaccessible cardinal is pseudo uplifting if and only if for every ordinal $\theta$ it is pseudo $\theta$-uplifting, meaning that there is a cardinal $\gamma>\theta$ such that $V_\kappa\prec V_\gamma$ is a proper elementary extension, without insisting that $\gamma$ is inaccessible.
Being strongly uplifting (see further) is boldface variant of being uplifting.
It is an elementary exercise to see that if $V_\kappa\prec V_\gamma$ is a proper elementary extension, then $\kappa$ and hence also $\gamma$ are $\beth$-fixed points, and so $V_\kappa=H_\kappa$ and $V_\gamma=H_\gamma$. It follows that a cardinal $\kappa$ is uplifting if and only if it is regular and there are arbitrarily large regular cardinals $\gamma$ such that $H_\kappa\prec H_\gamma$. It is also easy to see that every uplifting cardinal $\kappa$ is uplifting in $L$, with the same targets. Namely, if $V_\kappa\prec V_\gamma$, then we may simply restrict to the constructible sets to obtain $V_\kappa^L=L^{V_\kappa}\prec L^{V_\gamma}=V_\gamma^L$. An analogous result holds for pseudo-uplifting cardinals.
The consistency strength of uplifting and pseudo-uplifting cardinals are bounded between the existence of a Mahlo cardinal and the hypothesis Ord is Mahlo.
Theorem.
1. If $\delta$ is a Mahlo cardinal, then $V_\delta$ has a proper class of uplifting cardinals.
2. Every uplifting cardinal is pseudo uplifting and a limit of pseudo uplifting cardinals.
3. If there is a pseudo uplifting cardinal, or indeed, merely a pseudo $0$-uplifting cardinal, then there is a transitive set model of ZFC with a reflecting cardinal and consequently also a transitive model of ZFC plus Ord is Mahlo.
Proof. For (1), suppose that $\delta$ is a Mahlo cardinal. By the Lowenheim-Skolem theorem, there is a club set $C\subset\delta$ of cardinals $\beta$ with $V_\beta\prec V_\delta$. Since $\delta$ is Mahlo, the club $C$ contains unboundedly many inaccessible cardinals. If $\kappa<\gamma$ are both in $C$, then $V_\kappa\prec V_\gamma$, as desired. Similarly, for (2), if $\kappa$ is uplifting, then $\kappa$ is pseudo uplifting and if $V_\kappa\prec V_\gamma$ with $\gamma$ inaccessible, then there are unboundedly many ordinals $\beta<\gamma$ with $V_\beta\prec V_\gamma$ and hence $V_\kappa\prec V_\beta$. So $\kappa$ is pseudo uplifting in $V_\gamma$. From this, it follows that there must be unboundedly many pseudo uplifting cardinals below $\kappa$. For (3), if $\kappa$ is inaccessible and $V_\kappa\prec V_\gamma$, then $V_\gamma$ is a transitive set model of ZFC in which $\kappa$ is reflecting, and it is thus also a model of Ord is Mahlo. QED
The analogous observation for pseudo uplifting cardinals holds as well, namely, every pseudo uplifting cardinal is $\Sigma_3$-reflecting and a limit of $\Sigma_3$-reflecting cardinals; and if $\kappa$ is the least pseudo uplifting cardinal, then $\kappa$ is not $\Sigma_4$-reflecting, and there are no $\Sigma_4$-reflecting cardinals below $\kappa$.
Every uplifting cardinal admits an ordinal-anticipating Laver function, and indeed, a HOD-anticipating Laver function, a function $\ell:\kappa\to V_\kappa$, definable in $V_\kappa$, such that for any set $x\in\text{HOD}$ and $\theta$, there is an inaccessible cardinal $\gamma$ above $\theta$ such that $V_\kappa\prec V_\gamma$, for which $\ell^*(\kappa)=x$, where $\ell^*$ is the corresponding function defined in $V_\gamma$.
Many instances of the (weak) resurrection axiom imply that ${\frak c}^V$ is an uplifting cardinal in $L$:
Conversely, if $\kappa$ is uplifting, then various resurrection axioms hold in a corresponding lottery-iteration forcing extension.
Theorem. (Hamkins and Johnstone) The following theories are equiconsistent over ZFC:
(Information in this section comes from (Hamkins & Johnstone, 2014))
Strongly uplifting cardinals are precisely strongly pseudo uplifting ordinals, strongly uplifting cardinals with weakly compact targets, superstrongly unfoldable cardinals and almost-hugely unfoldable cardinals.
An ordinal is strongly pseudo uplifting iff for every ordinal $θ$ it is strongly $θ$-uplifting, meaning that for every $A⊆V_κ$, there exists some ordinal $λ>θ$ and an $A^*⊆V_λ$ such that $(V_κ;∈,A)≺(V_λ;∈,A^*)$ is a proper elementary extension.
An inaccessible cardinal is strongly uplifting iff for every ordinal $θ$ it is strongly $θ$-uplifting, meaning that for every $A⊆V_κ$, there exists some inaccessible(*) $λ>θ$ and an $A^*⊆V_λ$ such that $(V_κ;∈,A)≺(V_λ;∈,A^*)$ is a proper elementary extension. By replacing starred “inaccessible” with “weakly compact” and other properties, we get strongly uplifting with weakly compact etc. targets.
A cardinal $\kappa$ is $\theta$-superstrongly unfoldable iff for every $A\subseteq\kappa$, there is some transitive $M$ with $A\in M\models\text{ZFC}$ and some $j:M\rightarrow N$ an elementary embedding with critical point $\kappa$ such that $j(\kappa)\geq\theta$ and $V_{j(\kappa)}\subseteq N$.
A cardinal $\kappa$ is $\theta$-almost-hugely unfoldable iff for every $A\subseteq\kappa$, there is some transitive $M$ with $A\in M\models\text{ZFC}$ and some $j:M\rightarrow N$ an elementary embedding with critical point $\kappa$ such that $j(\kappa)\geq\theta$ and $N^{<j(\kappa)}\subseteq N$.
$κ$ is then called superstrongly unfoldable (resp. almost-hugely unfoldable) iff it is $θ$-strongly unfoldable (resp. $θ$-almost-hugely unfoldable) for every $θ$; i.e. the target of the embedding can be made arbitrarily large.
For any ordinals $κ$, $θ$, the following are equivalent:
For any cardinal $κ$ and ordinal $θ$, the following are equivalent:
The following theories are equiconsistent over $\mathrm{ZFC}$:
(Information in this section comes from (Bagaria et al., 2013))
Hamkins and Johnstone called an inaccessible cardinal $κ$ weakly superstrong if for every transitive set $M$ of size $κ$ with $κ∈M$ and $M^{<κ}⊆M$, a transitive set $N$ and an elementary embedding $j:M→N$ with critical point $κ$, for which $V_{j(κ)}⊆N$, exist.
It is called weakly almost huge if for every such $M$ there is such $j:M→N$ for which $N^{<j(κ)}⊆N$.
(As usual one can call $j(κ)$ the target.)
A cardinal is superstrongly unfoldable if it is weakly superstrong with arbitrarily large targets, and it is almost hugely unfoldable if it is weakly almost huge with arbitrarily large targets.
If $κ$ is weakly superstrong, it is $0$-extendible and $\Sigma_3$-extendible. Weakly almost huge cardinals also are $\Sigma_3$-extendible. Because $\Sigma_3$-extendibility always can be destroyed, all these cardinal properties (among others) are never Lever indestructible.