Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.
View the Project on GitHub neugierde/cantors-attic
Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar
Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine
The fast-growing hierarchy is a family of increasing functions \((f_\alpha:\mathbb N\rightarrow\mathbb N)_{\alpha<\mu}\) where \(\mu\) is a large countable ordinal such that a fundamental sequence is assigned for each limit ordinal less than \(\mu\). It maps countable ordinals to certain functions. The fast-growing hierarchy is defined as follows:
where:
Every nonzero ordinal \(\alpha<\varepsilon_0=\min\{\beta|\beta=\omega^\beta\}\) can be represented in a unique Cantor normal form \(\alpha=\omega^{\beta_{1}}+ \omega^{\beta_{2}}+\cdots+\omega^{\beta_{k-1}}+\omega^{\beta_{k}}\) where \(\alpha>\beta_1\geq\beta_2\geq\cdots\geq\beta_{k-1}\geq\beta_k\).
If \(\beta_k>0\) then \(\alpha\) is a limit and we can assign to it a fundamental sequence as follows
\(\alpha[n]=\omega^{\beta_{1}}+
\omega^{\beta_{2}}+\cdots+\omega^{\beta_{k-1}}+\left\{\begin{array}{lcr}
\omega^\gamma n \text{ if } \beta_k=\gamma+1\
\omega^{\beta_k[n]} \text{ if } \beta_k \text{ is a limit.}\
\end{array}\right.\)
If \(\alpha=\varepsilon_0\) then \(\alpha[0]=0\) and \(\alpha[n+1]=\omega^{\alpha[n]}\).
This system of fundamental sequences gives us so-called Wainer hierarchy
the most well-known example of fast-growing hierarchy. There are much stronger systems of fundamental sequences you can see on the following pages:
These calculations are based on Diagonalization. There are a few things to note: “\(\uparrow\)” means Knuth’s up-arrow notation. “\(\lbrace\rbrace\)” means BAN.
\begin{eqnarray*} f_0(n) &=& n + 1 \\ f_1(n) &=& f_0^n(n) = (
\cdots ((n + 1) + 1) + \cdots + 1) = n + n = 2n \\ f_2(n) &=&
f_1^n(n) = 2(2(\ldots 2(2n))) = 2^n n > 2 \uparrow n \\ f_3(n)
&>& 2\uparrow\uparrow n \\ f_4(n) &>&
2\uparrow\uparrow\uparrow n \\ f_m(n) &>& 2\uparrow^{m-1} n
\\ f_\omega(n) &>& 2\uparrow^{n-1} n = Ack(n) \
f_{\omega+1}(n) &>& \lbrace n,n,1,2 \rbrace \
f_{\omega+2}(n) &>& \lbrace n,n,2,2 \rbrace \
f_{\omega+m}(n) &>& \lbrace n,n,m,2 \rbrace \\ f_{\omega2}(n)
&>& \lbrace n,n,n,2 \rbrace \\ f_{\omega3}(n) &>& \lbrace
n,n,n,3 \rbrace \\ f_{\omega m}(n) &>& \lbrace n,n,n,m \rbrace
\\ f_{\omega^2}(n) &>& \lbrace n,n,n,n \rbrace \
f_{\omega^3}(n) &>& \lbrace n,n,n,n,n \rbrace \
f_{\omega^m}(n) &>& \lbrace n,m+2 [2] 2 \rbrace \
f_{\omega^{\omega}}(n) &>& \lbrace n,n+2 [2] 2 \rbrace >
\lbrace n,n [2] 2 \rbrace \\ f_{\omega^{\omega}+1}(n) &>&
\lbrace n,n,2 [2] 2 \rbrace \\ f_{\omega^{\omega}+2}(n) &>&
\lbrace n,n,3 [2] 2 \rbrace \\ f_{\omega^{\omega}+m}(n) &>&
\lbrace n,n,m+1 [2] 2 \rbrace \\ f_{\omega^{\omega}+\omega}(n)
&>& \lbrace n,n,n+1 [2] 2 \rbrace > \lbrace n,n,n [2] 2
\rbrace \\ f_{\omega^{\omega}+\omega+1}(n) &>& \lbrace
n,n,1,2 [2] 2 \rbrace \\ f_{\omega^{\omega}+\omega2}(n) &>&
\lbrace n,n,n,2 [2] 2 \rbrace \
f_{\omega^{\omega}+\omega^2}(n) &>& \lbrace n,n,n,n [2] 2
\rbrace \\ f_{ {\omega^{\omega}}2}(n) &>& \lbrace n,n [2] 3
\rbrace \\ f_{ {\omega^{\omega}}3}(n) &>& \lbrace n,n [2] 4
\rbrace \\ f_{ {\omega^{\omega}}m}(n) &>& \lbrace n,n [2] m+1
\rbrace \\ f_{\omega^{\omega+1}}(n) &>& \lbrace n,n [2] n+1
\rbrace > \lbrace n,n [2] n \rbrace \
f_{\omega^{\omega+2}}(n) &>& \lbrace n,n [2] n,n \rbrace \
f_{\omega^{\omega+3}}(n) &>& \lbrace n,n,n [2] n,n,n \rbrace
\\ f_{\omega^{\omega+m}}(n) &>& \lbrace n,m [2] 1 [2] 2
\rbrace \\ f_{\omega^{\omega2}}(n) &>& \lbrace n,n [2] 1
[2] 2 \rbrace = \lbrace n,2 [3] 2 \rbrace \
f_{\omega^{\omega3}}(n) &>& \lbrace n,n [2] 1 [2] 1 [2] 2
\rbrace = \lbrace n,3 [3] 2 \rbrace \\ f_{\omega^{\omega
m}}(n) &>& \lbrace n,m [3] 2 \rbrace \
f_{\omega^{\omega^2}}(n) &>& \lbrace n,n [3] 2 \rbrace \
f_{\omega^{\omega^3}}(n) &>& \lbrace n,n [4] 2 \rbrace \
f_{\omega^{\omega^m}}(n) &>& \lbrace n,n [m+1] 2 \rbrace \
f_{\omega^{\omega^\omega}}(n) &>& \lbrace n,n [n+1] 2 \rbrace
= \lbrace n,n [1,2] 2 \rbrace \\ f_{^4{\omega}}(n) &>&
\lbrace n,n [1 [2] 2] 2 \rbrace \\ f_{^5{\omega}}(n) &>&
\lbrace n,n [1 [1,2] 2] 2 \rbrace \\ f_{^6{\omega}}(n) &>&
\lbrace n,n [1 [1 [2] 2] 2] 2 \rbrace \
f_{\varepsilon_0}(n) &>& \lbrace n,n [ [1]] 2 \rbrace \
f_{\varepsilon_02}(n) &>& \lbrace n,n [ [1]] 3 \rbrace \
f_{\varepsilon_0m}(n) &>& \lbrace n,n [ [1]] m+1 \rbrace
\\ f_{\varepsilon_0\omega}(n) &>& \lbrace n,n [ [1]] n+1
\rbrace \\ f_{\varepsilon_0{\omega^{\omega}}}(n) &>& \lbrace
n,n [ [1]] 1 [2] 2 \rbrace \
f_{\varepsilon_0{\omega^{\omega^{\omega}}}}(n) &>& \lbrace n,n
[ [1]] 1 [1,2] 2 \rbrace \
f_{\varepsilon_0{\omega^{\omega^{\omega^{\omega}}}}}(n) &>&
\lbrace n,n [ [1]] 1 [1 [2] 2] 2 \rbrace \
f_{\varepsilon_0^2}(n) &>& \lbrace n,n [ [1]] 1 [ [1]] 2
\rbrace \\ f_{\varepsilon_0^3}(n) &>& \lbrace n,n [ [1]] 1
[ [1]] 1 [ [1]] 2 \rbrace \
f_{\varepsilon_0^{\omega}}(n) &>& \lbrace n,n [ [2]] 2
\rbrace \\ f_{\varepsilon_0^{\omega^{\omega}}}(n) &>&
\lbrace n,n [ [1,2]] 2 \rbrace \
f_{\varepsilon_0^{\omega^{\omega^{\omega}}}}(n) &>& \lbrace
n,n [[1 [2] 2]] 2 \rbrace \
f_{\varepsilon_0^{\varepsilon_0}}(n) &>& \lbrace n,n [[1 [
[1]] 2]] 2 \rbrace \
f_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}(n) &>&
\lbrace n,n [[1 [ [1]] 1 [ [1]] 2]] 2 \rbrace \
f_{\varepsilon_0^{\varepsilon_0^{\varepsilon_0^{\varepsilon_0}}}}(n)
&>& \lbrace n,n [[1 [[1 [ [1]] 2]] 2]] 2 \rbrace \
f_{\varepsilon_1}(n) &>& \lbrace n,n [[[1]]] 2 \rbrace
\\ f_{\varepsilon_2}(n) &>& \lbrace n,n [[[ [1]]]] 2
\rbrace \\ f_{\varepsilon_{\omega}}(n) &>& \lbrace n,n
[1\backslash1,2] 2 \rbrace \\ f_{\varepsilon_{\omega^2}}(n)
&>& \lbrace n,n [1\backslash1,1,2] 2 \rbrace \
f_{\varepsilon_{\omega^{\omega}}}(n) &>& \lbrace n,n
[1\backslash1 [2] 2] 2 \rbrace \
f_{\varepsilon_{\omega^{\omega^{\omega}}}}(n) &>& \lbrace n,n
[1\backslash1 [1,2] 2] 2 \rbrace \
f_{\varepsilon_{\varepsilon_0}}(n) &>& \lbrace n,n
[1\backslash1 [ [1]] 2] 2 \rbrace \
f_{\varepsilon_{\varepsilon_{\varepsilon_0}}}(n) &>& \lbrace
n,n [1\backslash1 [1\backslash1 [ [1]] 2] 2] 2 \rbrace \
f_{\zeta_0}(n) &>& \lbrace n,n [1\backslash1\backslash2] 2
\rbrace \\ f_{\zeta_0^{\zeta_0}}(n) &>& \lbrace n,n [1
[1\backslash1\backslash2] 2\backslash1\backslash2] 2 \rbrace
\\ f_{\varepsilon_{\zeta_0+1}}(n) &>& \lbrace n,n
[1\backslash2\backslash2] 2 \rbrace \
f_{\varepsilon_{\zeta_0+2}}(n) &>& \lbrace n,n
[1\backslash3\backslash2] 2 \rbrace \
f_{\varepsilon_{\varepsilon_{\zeta_0+1}}} &>& \lbrace n,n
[1\backslash1 [1\backslash2\backslash2] 2\backslash2] 2 \rbrace
\\ f_{\zeta_1}(n) &>& \lbrace n,n [1\backslash1\backslash3]
2 \rbrace \\ f_{\zeta_2}(n) &>& \lbrace n,n
[1\backslash1\backslash4] 2 \rbrace \
f_{\zeta_{\zeta_0}}(n) &>& \lbrace n,n
[1\backslash1\backslash1 [1\backslash1\backslash2] 2] 2 \rbrace
\\ f_{\eta_0}(n) &>& \lbrace n,n
[1\backslash1\backslash1\backslash2] 2 \rbrace \
f_{\varphi(4,0)}(n) &>& \lbrace n,n
[1\backslash1\backslash1\backslash1\backslash2] 2 \rbrace \
f_{\varphi(\omega,0)}(n) &>& \lbrace n,n [1 [2]\backslash2]
2 \rbrace \\ f_{\varphi(\varphi(\omega,0),0)}(n) &>& \lbrace
n,n [1 [1 [1 [2]\backslash2]\backslash2] 2] 2 \rbrace \
f_{\Gamma_0}(n) &>& \lbrace n,n [1/2] 2 \rbrace \
f_{\varphi(1,0,0,0)}(n) &>& \lbrace n,n [1 [1\neg4] 2] 2
\rbrace \\ f_{\vartheta(\Omega^{\omega})}(n) &>& \lbrace n,n
[1 [1\neg1,2] 2] 2 \rbrace \
f_{\vartheta(\Omega^{\Omega})}(n) &>& \lbrace n,n [1
[1\neg1\neg2] 2] 2 \rbrace \
f_{\vartheta(\Omega^{\Omega^{\Omega}})}(n) &>& \lbrace n,n [1
[1 [1\backslash_33] 2] 2] 2 \rbrace \
f_{\vartheta(\vartheta_1(1))}(n) &>& \lbrace n,n [1 [1\sim3]
2] 2 \rbrace \\ f_{\vartheta(\vartheta_1(2))}(n) &>& \lbrace
n,n [1 [1\sim1\sim2] 2] 2 \rbrace \
f_{\vartheta(\vartheta_1(\omega))}(n) &>& \lbrace n,n [1 [1
[2/_32] 2] 2] 2 \rbrace \
f_{\vartheta(\vartheta_1(\Omega))}(n) &>& \lbrace n,n [1 [1
[1/2/_32] 2] 2] 2 \rbrace \\ f_{\vartheta(\Omega_2)}(n)
&>& \lbrace n,n [1 [1 [1\sim2/_32] 2] 2] 2 \rbrace \
f_{\vartheta(\Omega_3)}(n) &>& \lbrace n,n [1 [1 [1
[1/_32/_42] 2] 2] 2] 2 \rbrace \
f_{\vartheta(\Omega_{\omega})}(n) &>& \lbrace n,n
[1\bullet2] 2 \rbrace \
f_{\vartheta(\Omega_{\varepsilon_0})}(n) &>& \lbrace n,n [1
[2/_{1 [1\backslash2] 2}2] 2] 2 \rbrace \
f_{\vartheta(\Omega_{\Gamma_0})}(n) &>& \lbrace n,n [1
[2/_{1 [1/2] 2}2] 2] 2 \rbrace \
f_{\vartheta(\Omega_{\vartheta(\Omega_2)})}(n) &>& \lbrace
n,n [1 [2/_{1 [1 [1 [1\sim2/_32] 2] 2] 2}2] 2] 2 \rbrace
\\ f_{\vartheta(\Omega_{\vartheta(\Omega_3)})}(n) &>&
\lbrace n,n [1 [2/_{1 [1 [1 [1 [1/_32/_42] 2] 2] 2] 2}2]
2] 2 \rbrace \
f_{\vartheta(\Omega_{\vartheta(\Omega_{\omega})})}(n) &>&
\lbrace n,n [1 [2/_{1 [1\bullet2] 2}2] 2] 2 \rbrace \
f_{\vartheta(\Omega_{\vartheta(\Omega_{\vartheta(\Omega_{\omega})})})}(n)
&>& \lbrace n,n [1 [2/_{1 [2/_{1 [1\bullet2] 2}2] 2}2] 2]
2 \rbrace \end{eqnarray*}
For \(\alpha<\varepsilon_0\) the fast-growing hierarchy relates to the Hardy hierarchy as follows
\(f_\alpha(n)=H_{\omega^\alpha}(n)\)
and at \(\varepsilon_0\) the Hardy hierarchy “catches up” to the fast-growing hierarchy i.e.
\(f_{\varepsilon_0}(n-1) ≤ H_{\varepsilon_0}(n) ≤ f_{\varepsilon_0}(n+1)\) for all \(n ≥ 1\).
The slow-growing hierarchy “catches up” to the fast-growing hierarchy at \(\psi_0(\Omega_\omega)\), using Buchholz’s ψ functions.