cantors-attic

Climb into Cantor’s Attic, where you will find infinities large and small. We aim to provide a comprehensive resource of information about all notions of mathematical infinity.

View the Project on GitHub neugierde/cantors-attic

Quick navigation
The upper attic
The middle attic
The lower attic
The parlour
The playroom
The library
The cellar

Sources
Cantor's Attic (original site)
Joel David Hamkins blog post about the Attic
Latest working snapshot at the wayback machine

$\text{Ord}$ is Mahlo

The assertion $\text{Ord}$ is Mahlo is the scheme expressing that the proper class REG consisting of all regular cardinals is a stationary proper class, meaning that it has elements from every definable (with parameters) closed unbounded proper class of ordinals. In other words, the scheme asserts for every formula $\varphi$, that if for some parameter $z$ the class $\{\alpha\mid \varphi(\alpha,z)\}$ is a closed unbounded class of ordinals, then it contains a regular cardinal.

A simple compactness argument establishes that $\text{Ord}$ is Mahlo is equiconsistent over $\text{ZFC}$ with the existence of an inaccessible reflecting cardinal. On the one hand, if $\kappa$ is an inaccessible reflecting cardinal, then since $V_\kappa\prec V$ it follows that any class club definable in $V$ with parameters below $\kappa$ will be unbounded in $\kappa$ and hence contain $\kappa$ as an element and consequently contain an inaccessible cardinal. On the other hand, if $\text{Ord}$ is Mahlo is consistent, then every finite fragment of the theory asserting that $\kappa$ is an inaccessible reflecting cardinal (which is after all asserted as a scheme) is consistent, and hence by compactness the whole theory is consistent.

If there is a pseudo uplifting (proof in that article) cardinal, or indeed, merely a pseudo $0$-uplifting cardinal, then there is a transitive set model of ZFC with a reflecting cardinal and consequently also a transitive model of ZFC plus $\text{Ord}$ is Mahlo. (Hamkins & Johnstone, 2014)

References

  1. Hamkins, J. D., & Johnstone, T. A. (2014). Resurrection axioms and uplifting cardinals. http://jdh.hamkins.org/resurrection-axioms-and-uplifting-cardinals/
Main library